Complex

COLLABORATORS

|  | TITLE : <br> Complex |  |
| :---: | :--- | :--- |
| ACTION | NAME | DATE |
| WRITTEN BY |  | July 10, 2022 |

## REVISION HISTORY

| NUMBER | DATE | DESCRIPTION | NAME |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |

## Contents

1 Complex ..... 1
1.1 Complex number Class implementation for AmigaTalk© 1998: ..... 1

## Chapter 1

## Complex

### 1.1 Complex number Class implementation for AmigaTalk© 1998:

The Complex Class is an implementation of complex numbers for the
AmigaTalk system. Its parent Class is Magnitude.
Methods available for the Complex Class are:
new
Initialize a new instance of the Class Complex.
realpart
Return the real number portion of the Complex number.
imagpart
Return the imaginary number portion of the Complex number.
magpart
Return the magnitude of the Complex number.
WARNING: There is no cross-checking to see if the magnitude
is correct, use computeMag or computeMagPhase first!
phasepart
Return the phase of the Complex number.
WARNING: There is no cross-checking to see if the phase
is correct, use computeMagPhase first!
computeMag
Determine the magnitude of the Complex number from the
real \& imaginary portions.
computeMagPhase
Determine the magnitude \& phase of the Complex number from the real \& imaginary portions. If the imaginary part is zero, an error
will be reported!
realpart: newReal

Change the real number portion of the Complex number.
imagpart: newImag
Change the imaginary number portion of the Complex number.
magpart: newMag
Change the magnitude (class instance variable) of the
Complex number.
phasepart: newPhase
Change the phase (class instance variable) of the
Complex number.
coerce: aNumber
Transform aNumber to an instance of Class Complex.
conjugate
Compute the complex conjugate of the Receiver.
~
Compute the complex conjugate of the Receiver.

+ aNumber
Add a number to the Complex receiver. The number will be transformed to a Complex if it's not one already!
- aNumber

Subtract a number from the Complex receiver. The number will be transformed to a Complex if it's not one already!

* aNumber

Multiply a number by the Complex receiver. The number will be transformed to a Complex if it's not one already!

## / aNumber

Divide a number into the Complex receiver. The number will be transformed to a Complex if it's not one already!

An error message is returned if aNumber is equal to zero.
printString
Print the Complex number as a String.
$==$ aNumber
Test whether the Receiver is equal to aNumber.
< aNumber
Test whether the magnitude of the receiver is less than aNumber.
> aNumber
Test whether the magnitude of the receiver is greater than aNumber.
<= aNumber
Test whether the magnitude of the receiver is less than or equal to
aNumber.
$>=$ aNumber
Test whether the magnitude of the receiver is greater than or equal
to aNumber.
~= aNumber
Test whether the receiver is NOT equal to aNumber.

